Highly enantioselective introduction of bis(alkoxycarbonyl)methyl group into the 2-position of piperidine skeleton

Yoshihiro Matsumura *, Diashirou Minato, Osamu Onomura
Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
Received 18 February 2006; received in revised form 3 April 2006; accepted 3 April 2006
Available online 30 August 2006

Abstract

Copper ion catalyzed carbon-carbon bond forming reaction of N-acyliminium ions with diaryl malonates was achieved with high enantioselectivity. The key intermediates in the method were 2-methoxy-3,4-didehydropiperidines, which were easily prepared through electrochemical oxidation of 1-(p-methoxybenzoyl)piperidine in methanol followed by the conversion of the oxidation product to didehydropiperidine derivative, which was subjected to a chiral $\mathrm{Cu}(\mathrm{II})$ catalyzed coupling reaction with diaryl malonates affording diaryl 2-piperidylmalonates. The maximum $\%$ ee (ee, enantiomeric excess) was 97% when di-p-chlorophenyl malonate was used as a nucleophile. © 2006 Elsevier B.V. All rights reserved.

Keywords: Optically active 2-alkylpiperidines; 2-Methoxy-3,4-didehydropiperidines; Electrochemical oxidation; Catalytic asymmetric reaction; Copper ion-catalyzed

1. Introduction

Asymmetric introduction of alkyl nucleophiles (NuH) to the 2-position of 1-protected piperidinium ions \mathbf{C} (PG: protecting group) may be one of the most convenient and simple routes for optically active 2-alkylpiperidines \mathbf{D}, key synthetic intermediates for a variety of chiral piperidine alkaloids since piperidinium ions \mathbf{C} can be generated from easily available 1-protected piperidines A through electrochemical oxidation of \mathbf{A} followed by acid treatment of the oxidation products \mathbf{B} (Scheme 1) [1]. However, there have been very few reports for such asymmetric introduction in such cases that piperidinium ions \mathbf{C} have a chiral protecting group [2] or a chiral NuH is used [3].

We have already found an asymmetric introduction of NuH onto the 2-position of 1-protected 3,4-didehydropiperidinium ions \mathbf{F}, which are also easily prepared from \mathbf{B}

[^0]through 1-protected 2-methoxy-3,4-didehydropiperidines E (Scheme 2) [4].

However, the highest enantioselectivity so far reported in our study was 71% ee in a case that dimethyl malonate $(\mathbf{2 p})$ as NuH was used toward \mathbf{F}. Since then, we have surveyed both PG of \mathbf{E} (R of $\mathbf{1 a - e}$) and $\mathrm{NuH}\left(\mathrm{R}^{\prime}\right.$ of $\left.\mathbf{1 p - w}\right)$ to improve the $\%$ ee of \mathbf{G} (3ap-ez) Eq. (1) and, as the result, succeeded in achieving 97% ee of \mathbf{G}. This paper describes the detail of those results.

Scheme 1. Asymmetric introduction of alkyl nucleophile (NuH) onto the 2-position of 1-protected piperidinium ions \mathbf{C}.

Scheme 2. Asymmetric introduction of alkyl nucleophile (NuH) onto the 2-position of 1-protected 3,4-didehydropiperidinium ions \mathbf{F}.

2. Results and discussion

2.1. Preparation of 1-protected 2-methoxy-3,4didehydropiperidines $1 \boldsymbol{a}-\boldsymbol{e}$

Substrates 1a-e were prepared from 1-acylated piperidines $\mathbf{4 a - e}$ according to the procedures indicated in Eq. (2) [5], the first step of which was electrochemical oxidation of 1a-e in methanol to afford 2-methoxylated compounds 5a-e [6]. The conversion of 5a-e into 1a-e was achieved by elimination of methanol, bromomethoxylation followed by dehydrobromination according to the reported method [5]. In a case of 1a, the yields of 5a and $1 \mathbf{1 a}$ were 91% at $5 \mathrm{~F} / \mathrm{mol}$ and 70%, respectively.

2.2. Chiral ligands

Some known chiral bisoxazoline ligands L1-L6 (Fig. 1) [7] were examined in the coupling reaction of $\mathbf{1 a - e}$ with $\mathbf{2 p}$ z.

2.3. Coupling reaction of $\mathbf{1 a}$ with dialkyl malonates $\mathbf{2 p - s}$

First, the coupling reaction between 1a and dialkyl malonates $\mathbf{2 p}-\mathbf{s}$ as NuH was examined in the presence of a chiral bisoxazoline ligand L1.

The results are shown in Table 1. Although the reaction of 1a with dimethyl malonate ($\mathbf{2 p}$) gave the coupling product

L1

L4

L5

L6

Fig. 1. Bisoxazolines as chiral ligands.

Table 1
Coupling reactions between $1 \mathbf{1 a}$ and some malonates $\mathbf{2 p}-\mathbf{s}^{\mathrm{a}}$

Entry	Malonic acid	Ester	Product	R^{\prime}	Yield (\%) [\% ee] ${ }^{\text {b }}$
1	$<{ }_{\mathrm{CO}_{2} \mathrm{Me}}^{\mathrm{CO}_{2} \mathrm{Me}}$	2p	3ap	Me	78 [41]
2	$<\mathrm{CO}_{2} \mathrm{CO}$	$2 q$	3 aq	Et	0 [-]
3	$<\begin{gathered} \mathrm{CO}_{2} t-\mathrm{Bu} \\ \mathrm{CO}_{2} t-\mathrm{Bu} \end{gathered}$	2r	3ar	$t-\mathrm{Bu}$	0 [-]
4	$<{ }_{\mathrm{CO}_{2} \mathrm{Ph}}^{\mathrm{CO}_{2} \mathrm{Ph}}$	2s	3as	Ph	50 [89]

${ }^{\text {a }}$ The reaction conditions: $\mathbf{1 a}(0.5 \mathrm{mmol}), \mathbf{2 p}-\mathbf{s}(0.75 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}$ (0.025 mmol), and $\mathbf{L} 1(0.03 \mathrm{mmol})$ in THF $(2.5 \mathrm{~mL})$ at RT for 12 h under nitrogen atmosphere.
${ }^{\mathrm{b}}$ Determined by chiral HPLC.
3ap in good yield (entry 1), using diethyl and di-tert-butyl malonates ($\mathbf{2 q}$) and ($\mathbf{2 r}$) in place of $\mathbf{2 p}$ did not afford the corresponding coupling products 3aq,ar (entries 2 and 3). On the other hand, the coupling reaction of $\mathbf{1 a}$ with diphenyl malonate ($\mathbf{2 s}$) proceeded to give the 2 -substituted piperidine 3as with higher enantioselectivity than that using $\mathbf{2 p}$ (entry 4).

2.4. Coupling reaction of $\mathbf{1 a}$ with diaryl malonates $\mathbf{2 s} \boldsymbol{s} \boldsymbol{z}$

On the basis of the results in Table 1, the coupling reaction of $\mathbf{1 a}$ with bis(monosubstituted phenyl) malonates $\mathbf{2 s}$ \mathbf{z} as NuH in the presence of a chiral bisoxazoline ligand $\mathbf{L} 1$ was examined.
$1 a$

3as-az

The results are shown in Table 2. Although using di-pmethoxyphenyl malonate ($\mathbf{2 t}$) did not afford the coupling product 3at (entry 2), di-p-methylphenyl or di-p-bromo-

Table 2
Coupling reactions between 1a and diaryl malonates $\mathbf{2 s}-\mathbf{z}^{\mathrm{a}}$

Entry	Diaryl malonate		Product	Yield (\%)	\% Ee ${ }^{\text {b }}$
	Ar				
1	Ph	2s	3as	50	89
2	$p-\mathrm{MeOPH}$	2 t	3at	0	-
3	$p-\mathrm{MePh}$	2u	3au	57	88
4	$p-\mathrm{BrPh}$	2v	3av	56	88
5	$p-\mathrm{ClPh}$	2w	3aw	61	93
6	$p-\mathrm{FPh}$	2x	3 ax	59	92
7	$m-\mathrm{ClPh}$	2y	3 ay	30	90
8	$o-\mathrm{ClPh}$	2z	3 az	16	35

[^1]phenyl malonate ($\mathbf{2 u}$) or ($\mathbf{2 v}$) afforded the corresponding 2-substituted piperidines 3au or 3av with high enantioselectivity (entries 3 and 4) similar to that of using $2 \mathbf{s}$ (entry 1). Di-p-chlorophenyl and di-p-fluorophenyl malonates (2w) and ($\mathbf{2 x}$), which were more acidic than $\mathbf{2 s}$, coupled with 1a to give the carbon-carbon bond forming products 3aw and 3ax with higher enantioselectivity than $\mathbf{2 s}$ (entries 5 and 6). However, di-(m - and o-chlorophenyl) malonates $(\mathbf{2 y})$ and (2z), which seemed to be a more bulky than $2 \mathbf{s}$, did not always work well (entries 7 and 8).

2.5. Coupling reaction of 1-protected 2-methoxy-3,4didehydropiperidines $1 \boldsymbol{a}-\boldsymbol{e}$ with dimethyl or diaryl malonate ($2 p$ or $2 s, w)$

The effect of 1-protecting group of 2-methoxy-3,4-didehydropiperidines $\mathbf{1 a - e}$ on their asymmetric coupling reaction with malonates $\mathbf{2 p}, \mathbf{s}, \mathbf{w}$ in the presence of chiral ligand $\mathbf{L 1}$ was examined.

The results are summarized in Table 3. Enhanced enantioselectivity by using diaryl malonates $\mathbf{2 s}, \mathbf{w}$ in place of dimethyl malonate ($\mathbf{2 p}$) was observed in the reactions using 1 -methoxycarbonylated, 1-benzoylated, and 1-p-chlorobenzoylated piperidines 1b-d. Although an asymmetric coupling reaction of 3,4-didehydro-2-methoxy-1-methoxycarbonylpiperidine (1b) with $\mathbf{2 p}$, which was prepared from 2-methoxy-1-methoxycarbonylpiperidine (5b) [8],

Table 3
Coupling reactions between $\mathbf{1 a}-\mathbf{e}$ and malonates $\mathbf{2 p}, \mathbf{s}, \mathbf{w}^{\mathbf{a}}$

Entry	Substrate		Malonate		Product	Yield (\%)	\% $\mathrm{Ee}^{\text {b }}$				
	R		R^{1}								
1	p-MeOPh	1a	Me	2p	3ap	78	41				
2		1a	Ph	2s	3 aa	50	89				
3		1a	$p-\mathrm{ClPh}$	2w	3aw	61	93				
4	MeO	1b	Me	2p	3bp	36	21				
5		1b	Ph	2s	3bs	48	49				
6		1b	$p-\mathrm{ClPh}$	2w	3bw	86	68				
7	Ph	1c	Me	2p	3cp	36	46				
8		1c	$p-\mathrm{ClPh}$	2w	3cw	51	94				
9	$p-\mathrm{ClPh}$	1d	Me	2p	3dp	38	49				
10		1d	$p-\mathrm{ClPh}$	2w	3dw	71	91				
11	PhO	1e	$p-\mathrm{ClPh}$	2w	3ew	73	77				
${ }^{\text {a }}$ The reaction conditions: $\mathbf{1 a - e}(0.5 \mathrm{mmol}), \mathbf{2 p}, \mathbf{s}, \mathbf{w}(0.75 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OTf})_{2}(0.025 \mathrm{mmol})$, and $\mathbf{L 1}(0.03 \mathrm{mmol})$ in THF $(2.5 \mathrm{~mL})$ at RT for 12 h under nitrogen atmosphere. ${ }^{\mathrm{b}}$ Determined by chiral HPLC.											

proceeded with low efficiency (entry 4), that of $\mathbf{1 b}$ with $\mathbf{2 w}$ afforded the coupling product 3bw in good enantioselectivity (entry 6). Also, the reaction of 1-benzoylated and 1-pchlorobenzoylated piperidines $\mathbf{1 c}$ and $\mathbf{1 d}$ with $\mathbf{2 w}$ as NuH gave the corresponding 2-substituted piperidines 3cw and 3dw in high enantioselectivities (entries 8 and 10). The reaction of 1-phenoxycarbonylated piperidine $\mathbf{1 e}$ with $\mathbf{2 w}$ afforded the coupling product 3 ew in a reasonable optical purity (entry 11).

2.6. Temperature effect on the coupling reaction of $\mathbf{1 a}, \boldsymbol{c}$ with $2 p, w$

With having those data in hand, we then examined a temperature effect on an enantioselective carbon-carbon bond formation at the 2-position of 1a,c with $\mathbf{2 p}, \mathbf{w}$ in the presence of chiral ligand L1.

The results are summarized in Table 4. Although in a case of using dimethyl malonate ($\mathbf{2 p}$) (0.75 mmol) the coupling reaction of $1 \mathbf{a}(0.5 \mathrm{mmol})$ did not occurred at all at $0^{\circ} \mathrm{C}$ in THF (2.5 mL) (entry 2), the reaction between $1 \mathbf{1 a}$ and di-p-chlorophenyl malonate ($2 \mathbf{w}$) proceeded well at $0^{\circ} \mathrm{C}$ to afford the coupling product 3aw in 95% ee (entry 4). The reaction of $\mathbf{1 a}(5 \mathrm{mmol})$ with $\mathbf{2 w}(7.5 \mathrm{mmol})$ in the larger scale than entry 4 at $0^{\circ} \mathrm{C}$ also gave 3aw in 97% ee (entry 5), while the reactions of $\mathbf{1 a}(0.5 \mathrm{mmol})$ with $\mathbf{2 w}$ $(0.75 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$, and of $\mathbf{1 c}(0.5 \mathrm{mmol})$ with $\mathbf{2 w}$ $(0.75 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ proceeded slowly (entries 6 and 8).

2.7. Solvent effect on the coupling reaction of $\mathbf{1 a}$ with $\mathbf{2 w}$

Solvent effect on the coupling reaction of $\mathbf{1 a}$ with $\mathbf{2 w}$ was examined in the presence of chiral ligand $\mathbf{L} 1$. The results
are summarized in Table 5. THF afforded the best result (entry 1), while dichloromethane, diethyl ether, toluene, ethyl acetate, and 1,2-dimethoxyethane were a little bit ineffective than THF (entries 2-6).

2.8. Effect of chiral ligand on the coupling reaction of $1 \mathbf{a}$ with $2 w$

The coupling reaction of $\mathbf{1 a}$ with $\mathbf{2 w}$ in THF was carried out in the presence of chiral bisoxazoline ligands L1-L6. The results are summarized in Table 6. Among the examined chiral ligands L1-L6 (entries 1-4), L1 gave the best result for 1a to give 3aw with 93% ee (entry 1). Ligand

Table 5
Solvent effect on the coupling reaction of $\mathbf{1 a}$ with $\mathbf{2 w}{ }^{\text {a }}$

Entry	Solvent	Yield (\%) of 3aw	\% Ee^{b} of 3aw
1	THF	61	93
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	43	81
3	$\mathrm{Et}_{2} \mathrm{O}$	37	83
4	Toluene	63	88
5	AcOEt	51	82
6	DME	45	75
${ }^{\text {a }}$ The reaction conditions: 1a $(0.5 \mathrm{mmol}), \mathbf{2 w}(0.75 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}$ (0.025 mmol), and $\mathbf{L} 1(0.03 \mathrm{mmol})$ in solvent $(2.5 \mathrm{~mL})$ at RT for 12 h under nitrogen atmosphere. ${ }^{\mathrm{b}}$ Determine by chiral HPLC.			

Table 6
Effect of ligand on the coupling reaction of $\mathbf{1 a}$ with $\mathbf{2 w}{ }^{\text {a }}$

Entry	Ligand	Yield (\%) of 3aw	$\% \mathrm{Ee}^{\mathrm{b}}$ of 3aw
1	L1	61	93
2	L2	72	92
3	L3	54	86
4	L4	52	71
5	L5	52	-65^{c}
6	L6	0	-

${ }^{\text {a }}$ The reaction conditions: $\mathbf{1 a}(0.5 \mathrm{mmol}), \mathbf{2 w}(0.75 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}$ (0.025 mmol), and L1-L6 $(0.03 \mathrm{mmol})$ in THF $(2.5 \mathrm{~mL})$ at RT for 12 h under nitrogen atmosphere.
${ }^{\mathrm{b}}$ Determined by chiral HPLC.
${ }^{c}$ Antipode of 3aw was obtained.

Table 4
Temperature effect on coupling reactions between $\mathbf{1 a}, \mathbf{c}$ and malonates $\mathbf{2 p}, \mathbf{w}^{\text {a }}$

Entry	Substrate		Malonate		Temperature	Product	Yield (\%)	\% $\mathrm{Ee}^{\text {b }}$
	R		R^{1}					
1	p-MeOPh	1a	me	2p	RT	3ap	78	41
2		1a		2p	$0^{\circ} \mathrm{C}$	3ap	0	-
3		1a	$p-\mathrm{ClPh}$	2w	RT	3aw	61	93
4		1a		2w	$0^{\circ} \mathrm{C}$	3aw	65	95
$5^{\text {c }}$		1a		2w	$0^{\circ} \mathrm{C}$	3aw	57	97
6		1a		2w	$-20{ }^{\circ} \mathrm{C}$	3aw	23	93
7	Ph	1c		2w	RT	3cw	51	94
8		1c		2w	$0^{\circ} \mathrm{C}$	3cw	24	95

[^2]$\mathbf{L} 2$ showed almost similar effect to $\mathbf{L 1}$ (entry 2), while ligands L3-L5 were a little ineffective than L1 (entries 35). PyBOX L6 did not work at all (entry 6).

2.9. Effect of Lewis acid on the coupling reaction of 1 a with $2 w$

Next, we examined a variety of Lewis acid catalysts in the reaction of $\mathbf{1 a}$ with di-p-chlorophenyl malonate ($\mathbf{2 w}$) to disclose the counter ion effect. The results are shown in Table 7.

Among metal trifluoromethanesulfonates, $\mathrm{Cu}(\mathrm{OTf})_{2}$ gave the best result (entry 1), while $\mathrm{Zn}(\mathrm{OTf})_{2}, \mathrm{Mg}(\mathrm{OTf})_{2}$, and $\mathrm{La}(\mathrm{OTf})_{3}$ were ineffective than $\mathrm{Cu}(\mathrm{OTf})_{2}$ (entries 1-3, and 6$). \mathrm{Sc}(\mathrm{OTf})_{3}$ and $\mathrm{Hf}(\mathrm{OTf})_{4}$ did not work as the catalyst (entries 4 and 5). Also, examined copper salts did not give better result than $\mathrm{Cu}(\mathrm{OTf})_{2}$. Namely, $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$, $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$, and $\mathrm{Cu}\left(\mathrm{SbF}_{6}\right)_{2}$ were $6-26 \%$ ee less effective than

Table 7
Effect of Lewis acid catalysts on the reaction of $\mathbf{1 a}$ with $\mathbf{2 w}{ }^{\text {a }}$

Entry	Lewis acid	Yield $(\%)$ of 3aw	$\%$ Ee of 3aw ${ }^{\text {b }}$
1	$\mathrm{Cu}(\mathrm{OTf})_{2}$	61	93
2	$\mathrm{Zn}(\mathrm{OTf})_{2}$	68	24
3	$\mathrm{Mg}(\mathrm{OTf})_{2}$	42	0
4	$\mathrm{Sc}(\mathrm{OTf})_{2}$	Trace	8
5	$\mathrm{Hf}(\mathrm{OTf})_{2}$	0	-
6	$\mathrm{La}(\mathrm{OTf})_{2}$	78	-8^{c}
7	CuCl	0	-
8	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$	58	87
9	$\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$	54	84
10	$\mathrm{Cu}\left(\mathrm{SbF}_{6}\right)_{2}$	36	67
11	$\mathrm{Cu}\left(\mathrm{PF}_{6}\right)_{2}$	0	-

[^3]$\mathrm{Cu}(\mathrm{OTf})_{2}$ (entries $8-10$), while CuCl_{2} and $\mathrm{Cu}\left(\mathrm{PF}_{6}\right)_{2}$ did not work at all (entries 7 and 11).

2.10. Identification of absolute stereochemistry of the coupling products

In order to propose a reaction mechanism, the absolute configuration of the coupling products was identified as shown in Eq. (7). Thus, 3aw (95% ee) were easily converted by the reaction with NaOMe to 3 ap (95% ee) in 85% yield. The comparison of the optical rotation of 3ap with authentic sample indicated that enantiomerically enriched isomer of 3aw had a R-configuration.

3aw: 95\%e.e.
3ap: 95\%e.e.

2.11. Reaction mechanism

The reaction mechanism for the coupling reaction of 1 with dialkyl malonates $\mathbf{2}$ is not clear, but it may be tentatively supposed as shown in Schemes 3-5 which are exemplified by the reaction of $\mathbf{1 a}$ with $\mathbf{2 w}$. At the initiation step, a copper enolate $\mathbf{P w}$ may be generated from $2 \mathbf{w}$ and $\mathrm{Cu}(\mathrm{OTf})_{2}$ with a loss of a proton which attacks on 1 a to generate an iminium ion 6a. The iminium ion is trapped with $\mathbf{P w}$ to afford a coupling product 3aw with a regeneration of $\mathrm{Cu}(\mathrm{II})$. Thus, a catalytic cycle of $\mathrm{Cu}(\mathrm{II})$ for a formation of 3aw from 1a is achieved.

The stereochemical outcome is hypothetically explainable using a mechanism described in Schemes 4 and 5, in which iminium ion 6a approaches on a copper enolate Pw through four paths 1-4. Paths 1 and 2 represent

Scheme 3. A plausible reaction mechanism.

Scheme 4. Stereochemical outcome 1.

Scheme 5. Stereochemical outcome 2.
approaches with minimizing an overlap between the $\mathrm{C}_{5,6}$ methylene groups of $\mathbf{6 a}$ and $\mathbf{P w}$ (Scheme 4), while paths 3 and 4 represent approaches in which the $\mathrm{C}_{5,6}$ methylene groups of $\mathbf{6 a}$ overlap Pw (Scheme 5).

Among those paths, path 1 seems more likely than the other paths because of a steric repulsion between Ph group of $\mathbf{P w}$ and an aryloyl group of $\mathbf{6 a}$ in path 2 and between the $\mathrm{C}_{5,6}$ methylene groups of $\mathbf{6 a}$ and $\mathbf{P w}$ in paths 3 and 4 .

The steric factor may be primarily important for the stereoselectivity, but the result is not always explained only by the steric factor since diaryl malonates $2 \mathbf{s}, \mathbf{u}-\mathbf{x}$ afforded the different $\%$ ee of the coupling products (entries 1, 3-6 in Table 2) and more bulky $\mathbf{L 3}$ gave a less stereoselective result than less bulky L1, L2 did (entries 13 in Table 6). A strength of the coordination (a tightness) between copper ion and the carbonyl oxygen in Pw may depend on Ar group of diaryl malonates, and it may be responsible to some extent for the stereoselectivity. Also, a substituent on the 4-phenyl group of the oxazolidine ring may affect to the tightness by its electronic or steric reason.

3. Conclusion

We have presented a facile method for asymmetric introduction of bis(alkoxycarbonyl)methyl group into the 2position of a piperidine skeleton. The key intermediates were 2-methoxy-3,4-didehydropiperidines 1a-e, which were prepared through electrochemical oxidation of easily available 1 -protected piperidines $\mathbf{4 a - e}$ in methanol. The highest enantioselectivity (97% ee) was observed in a coupling reaction between 1-(p-methoxybenzoyl)-3,4-didehydro-2-methoxypiperidine (1a) and di-p-chlorophenyl malonate ($\mathbf{2 w}$) with a catalytic amount of $\mathrm{Cu}(\mathrm{OTf})_{2}$ and a chiral ligand $\mathbf{L} 1$ in THF at $0^{\circ} \mathrm{C}$. Further study to improve the stereoselectivity is under investigation.

4. Experimental

4.1. General

HPLC analyses were achieved by using a LC-10AT VP and a SPD-10A VP of Shimadzu Seisakusho Inc. Specific
rotations were measured with Jasco DIP-1000. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a Varian Gemini 300 spectrometer with TMS as an internal standard. IR spectra were obtained on a Shimadzu FTIR-8100A. Mass spectra were obtained on a JEOL JMS-700N instrument. Melting points are uncorrected.

All solvents were dried by standard techniques. The preparation of 2-methoxy-3,4-didehydropiperidines 1a,c,d [4b], 1b [3c] and chiral ligands $\mathbf{L 2}, \mathbf{L 3}$ [4c] were already reported by us. Malonate $\mathbf{2 s}$ [9], $\mathbf{2 u}, \mathbf{w}$ [10], $\mathbf{2 v}$ [11], and $\mathbf{2 x}$ [12] are known compounds. Malonates $\mathbf{2 p}-\mathbf{r}$, chiral ligands L1,L4-L6, and $\mathrm{Cu}(\mathrm{OTf})_{2}, \mathrm{Mg}(\mathrm{OTf})_{2}, \mathrm{Sc}(\mathrm{OTf})_{3}, \mathrm{La}(\mathrm{OTf})_{2}$, $\mathrm{Hf}(\mathrm{OTf})_{4}, \quad \mathrm{Zn}(\mathrm{OTf})_{2}$ were commercially available. $\mathrm{Cu}\left(\mathrm{PF}_{6}\right)_{2}$ and $\mathrm{Cu}\left(\mathrm{SbF}_{6}\right)_{2}$ were prepared according to the reported method [13].

4.2. Preparation of 1-phenoxycarbonyl-2-methoxy-3,4didehydropiperidine (1e)

1-Phenoxycarbonyl-2-methoxy-3,4-didehydropiperidine (1e) was easily prepared by our reported procedure [3c-5]. Namely, electrochemical oxidation of 1-phenoxycarbonylpiperidine (4e) in methanol afforded 2-methoxylated compound 5e [14], which was successively transformed into the corresponding enecarbamate [15] by acid-catalyzed elimination of methanol. Bromomethoxylation of the enecarbamate afforded 3-bromo-2-methoxylated compound [15], which was transformed into $1 \mathbf{e}$ by a base-catalyzed elimination of hydrobromic acid.

4.2.1. 1-Phenoxycarbonyl-2-methoxy-3,4didehydropiperidine (1e)

Colorless oil; IR (neat) 3044, 2936, 1736, 1651, 1593, $1424,1368,1235,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.00-$ $2.12(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.40(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.45$ and $3.49(2 \mathrm{~s}, 3 \mathrm{H}), 4.18-4.28(\mathrm{~m}, 1 \mathrm{H}), 5.50$ and $5.60(2 \mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 5.80-5.88(\mathrm{~m}, 1 \mathrm{H}), 6.00-6.15(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, \quad 2 \mathrm{H}), \quad 7.22 \quad(\mathrm{t}, \quad J=8.1 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 7.38 \quad(\mathrm{t}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$); HRMS (M, EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}$ 233.1052; found 233.1042 .

4.3. Preparation of diaryl malonates $2 \boldsymbol{t}-\boldsymbol{z}$

Diaryl malonates $\mathbf{2 t - z}$ were prepared from malonic acid and the corresponding phenols in the presence of POCl_{3} according to a reported method [9].

4.3.1. Di-p-methoxyphenyl malonate (2t)

Pale brown solid; mp $77-80^{\circ} \mathrm{C}$; IR (neat) 2950, 2840, 1767, 1752, 1514, 1472, 1300, 1186, 1102, $1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.07(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) ; \operatorname{HRMS}(\mathrm{M}$, EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6} 316.0947$; found 316.0929.

4.3.2. Di-m-chlorophenyl malonate (2y)

Pale brown solid; $\mathrm{mp} 67-69^{\circ} \mathrm{C}$; IR (neat) 3073, 2940, 1773, 1752, 1590, 1474, 1431, 1197, 1134, $1070 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.86(\mathrm{~s}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.20(\mathrm{~s}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=8.1 \mathrm{~Hz}$, 2 H); HRMS (M, EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{6} 323.9956$; found 323.9937.

4.3.3. Di-o-chlorophenyl malonate (2z)

Colorless oil; IR (neat) 3073, 2950, 1782, 1763, 1584, 1478, 1217, 1063, $752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.98(\mathrm{~s}$, $2 \mathrm{H}), 7.20-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.448(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$; HRMS (M, EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4} 323.9956$; found 323.9932 .

4.4. Asymmetric coupling reaction of 1 with 2: a typical experimental procedure

A solution of di-p-chlorophenyl malonate (2w) $(0.75 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(0.025 \mathrm{mmol})$ and $\mathbf{L 1}(0.03 \mathrm{mmol})$ in THF (1 mL) was stirred for 5 min at room temperature under a nitrogen atmosphere. Into the solution was added a solution of $\mathbf{1 a}(0.5 \mathrm{mmol})$ in THF. After stirring for 12 h , the resulting mixture was poured into aqueous NaHCO_{3} $(5 \mathrm{~mL})$. The organic portion was extracted with AcOEt $(10 \mathrm{~mL} \times 3)$ and dried over MgSO_{4}. The resulting solution was concentrated in vacuo. The residue was chromatographed on silica gel (hexane/AcOEt $=5 / 1$) to afford 3aw (61% yield, 93% ee). The spectroscopic data of products 3ap,bp, $\mathbf{c p}, \mathbf{d p}$ were also described in the report [4b].

4.4.1. Di-p-chlorophenyl [1-(p-methoxybenzoyl)-3,4-didehydro-2-piperidyl]malonate (3aw) (93\% ee)

Colorless oil; $[\alpha]_{\mathrm{D}}^{25}+53.7^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)$; IR (neat) 2934, 2840, 1752, 1624, 1608, 1487, 1429, 1304, 1250, 1192, 1134, 1090, $1015 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.00-$ $2.17(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.40(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.45(\mathrm{~m}, 1 \mathrm{H})$, $3.75-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.75-5.90 \quad(\mathrm{~m}, \quad 1 \mathrm{H}), \quad 6.00-6.20 \quad(\mathrm{~m}, \quad 2 \mathrm{H}), \quad 6.90 \quad(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.40(\mathrm{~m}, 6 \mathrm{H})$; HRMS (M, EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{6} 539.0902$; found 539.0921.

The ee was obtained by DAICEL Chiralcel OD $(\varnothing 4.6 \mathrm{~mm}, \quad 250 \mathrm{~mm})$ hexane/isopropanol (5/1) (v/v), $1.0 \mathrm{~mL} / \mathrm{min}$, detection at $210 \mathrm{~nm}, 9 \mathrm{~min}$ for minor enantiomer and 24 min for major enantiomer.

4.4.2. Diphenyl [1-(p-methoxybenzoyl)-3,4-didehydro-2-

piperidyl]malonate (3as) (89% ee)
Colorless oil; $[\alpha]_{\mathrm{D}}^{22}+86.2^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right) ;$ IR (neat) 3044, 2936, 2840, 1752, 1628, 1512, 1493, 1427, 1304, $1250,1186,1136,1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.90-$ $2.15(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.40(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.50(\mathrm{~m}, 1 \mathrm{H})$, 3.75-3.95 (m, 1H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.80-5.95 (m, 1H), 6.00-6.20 (m, 2H), $6.90(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.45(\mathrm{~m}, 12 \mathrm{H})$; HRMS (M, EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{6}$ 471.1682; found 471.1664.

The ee was obtained by DAICEL Chiralcel OD ($\varnothing 4.6 \mathrm{~mm}, \quad 250 \mathrm{~mm}$) hexane/isopropanol (5/1) (v/v), $1.0 \mathrm{ml} / \mathrm{min}$, detection at $210 \mathrm{~nm}, 25 \mathrm{~min}$ for minor enantiomer and 39 min for major enantiomer.
4.4.3. Di-p-methylphenyl [1-(p-methoxybenzoyl)-3,4-didehydro-2-piperidyl]malonate (3au) (88% ee)

Colorless oil; $[\alpha]_{\mathrm{D}}^{21}+70.9^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)$; IR (neat) 2932, 2840, 1750, 1628, 1609, 1507, 1426, 1304, 1252, $1136,843 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.95-2.15(\mathrm{~m}, 1 \mathrm{H})$, $2.15-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.45$ $(\mathrm{m}, 1 \mathrm{H}), 3.75-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.90(\mathrm{~m}, 1 \mathrm{H}), 6.00-6.20(\mathrm{~m}, 2 \mathrm{H})$, $6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.03$ and $7.06(2 \mathrm{~d}, J=9.0 \mathrm{~Hz}$, $4 \mathrm{H}), 7.16$ and $7.19(2 \mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}$); HRMS (M, EI) calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{6}$ 499.1995; found 499.1986.

The ee was obtained by DAICEL Chiralcel OD ($\varnothing 4.6 \mathrm{~mm}, \quad 250 \mathrm{~mm}$) hexane/isopropanol (5/1) (v/v), $1.0 \mathrm{~mL} / \mathrm{min}$, detection at $210 \mathrm{~nm}, 10 \mathrm{~min}$ for minor enantiomer and 20 min for major enantiomer.
4.4.4. Di-p-bromophenyl [1-(p-methoxybenzoyl)-3,4-didehydro-2-piperidyl]malonate (3av) (88% ee)

Colorless oil; $[\alpha]_{\mathrm{D}}^{22}+38.6^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)$, IR (neat) 2936, 2838, 2249, 1752, 1640, 1508, 1458, 1304, 1254, 1134, 1068, $1012 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.00-2.15$ $(\mathrm{m}, 1 \mathrm{H}), 2.20-2.40(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.95$ $(\mathrm{m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.90$ $(\mathrm{m}, 1 \mathrm{H}), 6.00-6.15(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.00-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.55$ (m, 4H); HRMS (M+H, FAB) calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{NO}_{6}$ 627.9971; found 627.9985 .

The ee was obtained by DAICEL Chiralcel OD ($\varnothing 4.6 \mathrm{~mm}, \quad 250 \mathrm{~mm}$) hexane/isopropanol (5/1) (v/v), $1.0 \mathrm{~mL} / \mathrm{min}$, detection at $210 \mathrm{~nm}, 10 \mathrm{~min}$ for minor enantiomer and 26 min for major enantiomer.
4.4.5. Di-p-fluorophenyl [1-(p-methoxybenzoyl)-3,4-didehydro-2-piperidyl]malonate (3ax) (92\% ee)

Colorless oil; $[\alpha]_{\mathrm{D}}^{22}+110.1^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)$; IR (neat) 3078, 2936, 2840, 1754, 1628, 1611, 1507, 1429, 1306, 1254, 1136, 1030, $843 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.00-$ $2.15(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.40(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.45(\mathrm{~m}, 1 \mathrm{H})$, $3.75-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.80-5.95(\mathrm{~m}, 1 \mathrm{H}), 6.00-6.20(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-7.20(\mathrm{~m}, 8 \mathrm{H}), 7.33(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2 H); HRMS (M, EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{NO}_{6} 507.1493$; found 507.1490.

The ee was obtained by DAICEL Chiralcel OD ($\varnothing 4.6 \mathrm{~mm}, \quad 250 \mathrm{~mm}$) hexane/isopropanol (5/1) (v/v), $1.0 \mathrm{~mL} / \mathrm{min}$, detection at $210 \mathrm{~nm}, 9 \mathrm{~min}$ for minor enantiomer and 22 min for major enantiomer.
4.4.6. Di-m-chlorophenyl [1-(p-methoxybenzoyl)-3,4-didehydro-2-piperidyl]malonate (3ay) (90\% ee)

Colorless oil; $[\alpha]_{\mathrm{D}}^{22}+61.6^{\circ}\left(c=0.25, \mathrm{CHCl}_{3}\right)$; IR (neat) 3069, 2934, 2838, 1754, 1624, 1591, 1512, 1471, 1427, 1304, 1248, 1192, $1129 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 2.05-2.15 (m, 1H), 2.25-2.45 (m,1H), 3.25-3.45 (m, $1 \mathrm{H}), \quad 3.75-3.95(\mathrm{~m}, \quad 1 \mathrm{H}), \quad 3.83(\mathrm{~s}, 3 \mathrm{H}), \quad 4.27(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.90(\mathrm{~m}, 1 \mathrm{H}), 6.00-6.20(\mathrm{~m}, 2 \mathrm{H})$,
$6.91(\mathrm{~d}, ~ J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.40(\mathrm{~m}, 10 \mathrm{H})$; HRMS (M, EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{6}$ 539.0902; found 539.0912.

The ee was obtained by DAICEL Chiralcel OD $(\varnothing 4.6 \mathrm{~mm}, \quad 250 \mathrm{~mm})$ hexane/isopropanol (5/1) (v/v), $1.0 \mathrm{~mL} / \mathrm{min}$, detection at $210 \mathrm{~nm}, 8 \mathrm{~min}$ for minor enantiomer and 15 min for major enantiomer.

4.4.7. Di-o-chlorophenyl [1-(p-methoxybenzoyl)-3,4-didehydro-2-piperidyl]malonate (3az) (35\% ee)

White solid; $\mathrm{mp} 143-144^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{20}+38.8^{\circ} \quad(c=0.5$, CHCl_{3}); IR (neat) 2936, 2840, 1759, 1628, 1609, 1512, 1478, 1428, 1304, 1254, 1136, $1061 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.00-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.40(\mathrm{~m}, 1 \mathrm{H}), 3.30-$ $3.50(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.42(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-6.00(\mathrm{~m}, 1 \mathrm{H}), 6.00-6.25(\mathrm{~m}, 2 \mathrm{H})$, $6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.50(\mathrm{~m}, 10 \mathrm{H}) ; \operatorname{HRMS}(\mathrm{M}$, EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{6} 539.0902$; found 539.0920 .

The ee was obtained by DAICEL Chiralcel OD $(\varnothing 4.6 \mathrm{~mm}, \quad 250 \mathrm{~mm})$ hexane/isopropanol (5/1) (v/v), $1.0 \mathrm{~mL} / \mathrm{min}$, detection at $210 \mathrm{~nm}, 12 \mathrm{~min}$ for minor enantiomer and 19 min for major enantiomer.

4.4.8. Diphenyl (1-methoxycarbonyl-3,4-didehydro-2piperidyl)malonate (3bs) (49\% ee)

Colorless oil; $[\alpha]_{\mathrm{D}}^{21}+88.1^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right) ;$ IR (neat) 3044, 2955, 2840, 1752, 1701, 1591, 1491, 1447, 1410, 1300, $1188 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.00-2.42(\mathrm{~m}, 2 \mathrm{H})$, $3.05-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.71$ and $3.75(2 \mathrm{~s}, 3 \mathrm{H}), 4.10-4.42(\mathrm{~m}$, $2 \mathrm{H}), 5.25-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.98-6.10(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.20-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.45(\mathrm{~m}, 4 \mathrm{H})$; HRMS (M, EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{6} 395.1369$; found 395.1357.

The ee was obtained by DAICEL Chiralcel OD ($\varnothing 4.6 \mathrm{~mm}, \quad 250 \mathrm{~mm}$) hexane/isopropanol (10/1) (v/v), $1.0 \mathrm{~mL} / \mathrm{min}$, detection at $210 \mathrm{~nm}, 9 \mathrm{~min}$ for minor enantiomer and 10 min for major enantiomer.

4.4.9. Di-p-chlorophenyl (1-methoxycarbonyl-3,4-didehydro-2-piperidyl)malonate (3bw) (68% ee)

Colorless oil; $[\alpha]_{\mathrm{D}}^{21}+82.2^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)$; IR (neat) 2955, 1754, 1701, 1487, 1300, 1200, 1196, 1092, $1015 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.00-2.12(\mathrm{~m}, 1 \mathrm{H})$, $2.20-2.38(\mathrm{~m}, 1 \mathrm{H}), 3.00-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.68$ and 3.72 $(2 \mathrm{~s}, 3 \mathrm{H}), 4.10-4.42(\mathrm{~m}, 2 \mathrm{H}), 5.20-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.90-$ $6.10(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.30-7.40(\mathrm{~m}$, 4 H); HRMS (M, EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NO}_{6} 463.0589$; found 463.0570 .

The ee was obtained by DAICEL Chiralcel OD ($\varnothing 4.6 \mathrm{~mm}, \quad 250 \mathrm{~mm}$) hexane/isopropanol (50/1) (v/v), $1.0 \mathrm{~mL} / \mathrm{min}$, detection at $210 \mathrm{~nm}, 12 \mathrm{~min}$ for minor enantiomer and 16 min for major enantiomer.

4.4.10. Di-p-chlorophenyl (1-benzoyl-3,4-didehydro-2piperidyl)malonate (3cw) (94\% ee)

White solid; $\mathrm{mp} 111-113{ }^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{22}+60.0^{\circ}(c=0.25$, CHCl_{3}); IR (neat) 2932, 1753, 1632, 1487, 1429, 1306,

1192, 1090, $1015 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.00-2.12(\mathrm{~m}$, $1 \mathrm{H}), 2.2 .0-2.38(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.85(\mathrm{~m}$, $1 \mathrm{H}), 4.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ (br d, $J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.05-6.15(\mathrm{~m}, 2 \mathrm{H}), 7.09$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.45(\mathrm{~m}, 9 \mathrm{H})$; HRMS (M, EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NO}_{5}$ 509.0797; found 509.0786 .

The ee was obtained by DAICEL Chiralcel OD $(\varnothing 4.6 \mathrm{~mm}, \quad 250 \mathrm{~mm})$ hexane/isopropanol (5/1) (v/v), $1.0 \mathrm{~mL} / \mathrm{min}$, detection at $210 \mathrm{~nm}, 8 \mathrm{~min}$ for minor enantiomer and 15 min for major enantiomer.

4.4.11. Di-p-chlorophenyl [1-(p-chlorobenzoyl)-3,4-didehydro-2-piperidyl]malonate (3dw) (91\% ee)

White solid; mp $31-33^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{19}+40.3^{\circ} \quad(c=0.25$, CHCl_{3}); IR (neat) 2930, 1752, 1632, 1487, 1431, 1306, 1194, 1090, $1015 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.00-2.40$ $(\mathrm{m}, 2 \mathrm{H}), 3.15-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.71$ and $3.76(2 \mathrm{~d}, J=5.4$ and $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.52(\mathrm{~m}, 8 \mathrm{H}) ; \operatorname{HRMS}(\mathrm{M}$, EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{20}{ }^{35} \mathrm{Cl}_{2}{ }^{37} \mathrm{ClNO}_{5}$ 545.0378; found 545.0394.

The ee was obtained by DAICEL Chiralcel OD $(\varnothing 4.6 \mathrm{~mm}, \quad 250 \mathrm{~mm})$ hexane/isopropanol (5/1) (v/v), $1.0 \mathrm{~mL} / \mathrm{min}$, detection at $210 \mathrm{~nm}, 7 \mathrm{~min}$ for minor enantiomer and 12 min for major enantiomer.

4.4.12. Di-p-chlorophenyl (1-phenoxycarbonyl-3,4-didehydro-2-piperidyl)malonate (3ew) (77\% ee)

Colorless oil; $[\alpha]_{\mathrm{D}}^{24}+89.6^{\circ}\left(c=0.7, \mathrm{CHCl}_{3}\right)$; IR (neat) 3046, 2936, 1755, 1719, 1489, 1424, 1209, 1092, $1015 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.0-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.35-$ $2.50(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.35(\mathrm{~m}, 1 \mathrm{H}), 4.11$ and $4.21(2 \mathrm{~d}$, $J=7.8$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.45(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.56(\mathrm{~m}$, $1 \mathrm{H}), 6.00-6.18(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.42(\mathrm{~m}, 13 \mathrm{H}) ; \operatorname{HRMS}(\mathrm{M}$, EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NO}_{6} 525.0746$; found 525.0741 .

The ee was obtained by DAICEL Chiralcel OD $(\varnothing 4.6 \mathrm{~mm}, \quad 250 \mathrm{~mm})$ hexane/isopropanol (5/1) (v/v), $1.0 \mathrm{~mL} / \mathrm{min}$, detection at $210 \mathrm{~nm}, 7 \mathrm{~min}$ for minor enantiomer and 9 min for major enantiomer.

4.5. Transformation of 3aw into (R)-3ap

A solution of $\mathrm{NaOMe}(95 \mathrm{mg}, 1.77 \mathrm{mmol})$ in MeOH $(7 \mathrm{~mL})$ was added into a solution of 3aw $(95 \%$ ee, $318 \mathrm{mg}, 0.59 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$, and the resulting solution was allowed to be stirred at $0^{\circ} \mathrm{C}$ to room temperature. After 12 h , solvent of the reaction mixture was removed in vacuo. Into the residue was added water. The organic portion was extracted with AcOEt ($10 \mathrm{~mL} \times 3$) and dried over MgSO_{4}. The resulting solution was concentrated in vacuo to afford a crude (R)-3ap [1], which was purified by silica gel chromatography (hexane/AcOEt $=$ $5 / 1$) to afford (R)-3ap (85% yield, 95% ee). $[\alpha]_{\mathrm{D}}^{25}+172.4^{\circ}$ ($c=0.25, \mathrm{CHCl}_{3}$).

The ee was obtained by DAICEL Chiralcel OD ($\varnothing 4.6 \mathrm{~mm}, \quad 250 \mathrm{~mm}$) hexane/isopropanol (9/1) (v/v),
$1.0 \mathrm{~mL} / \mathrm{min}$, detection at $210 \mathrm{~nm}, 41 \mathrm{~min}$ for (S)-3ap and 53 min for (R)-3ap.

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research on Priority Areas (No. 420: Reaction Control of Dynamic Complexes) from the Ministry of Education, Science, Sports and Culture, Japan and by a Grant-in-Aid for Scientific Research (C) (No. 15550094) from Japan Society for the Promotion of Science.

References

[1] (a) T. Shono, Y. Matsumura, K. Tsubata, Org. Synth. 63 (1984) 206;
(aa) T. Shono, Y. Matsumura, K. Tsubata, Org. Synth. Coll. VII (1990) 307;
(b) W.N. Speckamp, M.J. Moolenaar, Tetrahedron 56 (2000) 3817.
[2] (a) K.T. Wanner, A. Kaetner, Heterocycles 26 (1987) 921;
(b) S.S. Kinderman, J.H. van Maarseveen, H.E. Schoemaker, H. Hiemstra, F.P.J.T. Rutjes, Synthesis (2004) 1413.
[3] (a) Y. Matsumura, Y. Kanda, K. Shirai, O. Onomura, T. Maki, Org. Lett. 1 (1999) 175;
(b) R.A. Pilli, C.F. Alves, M.A. Bockelmann, Y.P. Mascarenhas, J.G. Nery, I. Vencato, Tetrahedron Lett. 40 (1999) 2891;
(c) Y. Matsumura, Y. Kanda, K. Shirai, O. Onomura, T. Maki, Tetrahedron 56 (2000) 7411.
[4] (a) O. Onomura, Y. Kanda, Y. Nakamura, T. Maki, Y. Matsumura, Tetrahedron Lett. 43 (2002) 3229;
(b) Y. Kanda, O. Onomura, T. Maki, Y. Matsumura, Chirality 15 (2003) 89;
(c) O. Onomura, Y. Kanda, E. Imai, Y. Matsumura, Electrochim. Acta 50 (2005) 4926.
[5] T. Shono, Y. Matsumura, O. Onomura, Y. Yamada, Tetrahedron Lett. 28 (1987) 4073.
[6] T. Shono, H. Hamaguchi, Y. Matsumura, J. Am. Chem. Soc. 97 (1975) 4264.
[7] (a) Recent representative asymmetric carbon-carbon bond forming reactions using chiral bisoxazoline ligand: D.A. Evans, D.M. Fitch, T.E. Smith, V.J. Cee, J. Am. Chem. Soc. 122 (2000) 10033;
(b) M.A. Pericas, C. Puigjaner, A. Riera, A. Vidal-Ferran, M. Gomez, F. Jimenez, G. Muller, M. Rocamora, Chem. Eur. J. 8 (2002) 4164;
(c) N. Halland, T. Velgaard, K.A. Jorgensen, J. Org. Chem. 68 (2003) 5067;
(d) M. Marigo, A. Kjaersgaard, K. Juhl, N. Gathergood, K.A. Jorgensen, Chem. Eur. J. 9 (2003) 2359;
(e) D.A. Evans, D. Seidel, M. Rueping, H.W. Lam, J.T. Shaw, C.W. Downey, J. Am. Chem. Soc. 125 (2003) 12692;
(f) V.K. Aggarwal, A.J. Belfield, Org. Lett. 5 (2003) 5075;
(g) M.P. Sibi, G. Petrovic, J. Zimmerman, J. Am. Chem. Soc. 127 (2005) 2390;
(h) M. Ma, L. Peng, C. Li, X. Zhang, J. Wang, J. Am. Chem. Soc. 127 (2005) 15016.
[8] (a) T. Shono, Y. Matsumura, K. Uchida, H. Kobayashi, J. Org. Chem. 50 (1985) 3243;
(b) T. Shono, Y. Matsumura, K. Tsubata, J. Am. Chem. Soc. 103 (1981) 1172;
(c) T. Shono, Y. Matsumura, K. Uchida, K. Tagami, Chem. Lett. (1987) 919;
(d) T. Shono, Y. Matsumura, K. Tsubata, Y. Sugihara, S. Yamane, T. Kanazawa, T. Aoki, J. Am. Chem. Soc. 104 (1982) 6697.
[9] I. Jabin, G. Revial, N. Monnier-Benoit, P. Netchitailo, J. Org. Chem. 66 (2001) 256.
[10] H. Junek, E. Ziegler, U. Herzog, H. Kroboth, Synthesis (1976) 332.
[11] L.F. Tietze, U. Beifuss, M. Ruther, A. Ruehlmann, J. Antel, G.M. Sheldrick, Angew. Chem., Int. Ed. Engl. 27 (1988) 1186.
[12] H.Y. Li, G.A. Boswell, Tetrahedron Lett. 37 (1996) 1551.
[13] D.A. Evans, J.A. Murry, P. von Matt, R.D. Norcross, S.J. Miller, Angew. Chem., Int. Ed. Engl. 34 (1995) 798.
[14] M. Mitzlaff, K. Warning, H. Jensen, Liebigs Ann. Chem. (1978) 1713.
[15] P. Stanetty, M.D. Mihovilovic, K. Mereiter, Monatsh. Chem. 128 (1997) 1061.

[^0]: * Corresponding author.

 E-mail address: matumura@net.nagasaki-u.ac.jp (Y. Matsumura).

[^1]: ${ }^{\text {a }}$ The reaction conditions: $\mathbf{1 a}(0.5 \mathrm{mmol}), \mathbf{2 s}-\mathbf{z}(0.75 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}$ $(0.025 \mathrm{mmol})$, and $\mathbf{L 1}(0.03 \mathrm{mmol})$ in THF $(2.5 \mathrm{~mL})$ at RT for 12 h under nitrogen atmosphere.
 ${ }^{\mathrm{b}}$ Determined by chiral HPLC.

[^2]: ${ }^{\text {a }}$ The reaction conditions: $\mathbf{1 a}, \mathbf{c}(0.5 \mathrm{mmol}), \mathbf{2 p}, \mathbf{w}(0.75 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(0.025 \mathrm{mmol})$, and $\mathbf{L} \mathbf{1}(0.03 \mathrm{mmol})$ in THF (2.5 mL) for 12 h under nitrogen atmosphere.
 ${ }^{\mathrm{b}}$ Determined by chiral HPLC.
 ${ }^{\text {c }}$ The reaction conditions: $\mathbf{1 a}(7.5 \mathrm{mmol}) \mathrm{Cu}(\mathrm{OTf})_{2}(0.025 \mathrm{mmol})$, and $\mathbf{L} \mathbf{1}(0.03 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ for 12 h under nitrogen atmosphere.

[^3]: ${ }^{\text {a }}$ The reaction conditions: 1a $(0.5 \mathrm{mmol}), \mathbf{2 w}(0.75 \mathrm{mmol})$, Lewis acid $(0.025 \mathrm{mmol})$, and $\mathbf{L 1}(0.03 \mathrm{mmol})$ in THF $(2.5 \mathrm{~mL})$ at RT for 12 h under nitrogen atmosphere.
 ${ }^{\mathrm{b}}$ Determined by chiral HPLC.
 ${ }^{\text {c }}$ The reverse stereochemistry was observed.

